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Introduction

Hydrofluoric acid (HF), a particularly dangerous acid 
because of its corrosiveness and local and systemic tox-
icity, induces severe tissue necrosis based on the two 
involved ions: the corrosive hydrogen ion (H+) associ-
ated with cutaneous [1], ocular [2], and respiratory [3–5] 
injuries; and the cytotoxic fluoride ion (F−) responsible 
for local and systemic toxicity. In addition, this small 
molecule, which is only partly dissociated (pK

a
 = 3.2) at 

the skin surface, is capable of penetrating deeply into the 

tissues [6]. When dissociation occurs, the skin is partly 
altered by H+, and then the liberated F− ions can develop 
their toxic properties due to calcium and magnesium 
chelation [7] (Figure 1). The chelation of calcium and 
magnesium induces metabolic disorders [8,9] that lead to 
delayed cellular death and consequent secondary tissue 
necrosis. System effects [10] are potentially lethal [11–14] 
depending on the available amount of free fluoride ions.

Since the 1950s [15,16], the management of HF chemi-
cal burns has considerably improved. Experimental 
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studies were conducted to further the understanding of 
the evolution of these burns and to improve their decon-
tamination. Animals studies were performed on pigs [17], 
rats [18,19], and guinea pigs [20], but no reproducible 
model was found, especially for high HF concentrations 
[21].

There is a lack of scientific experimental studies to 
objectively characterize duration and mode of action 
of concentrated HF on human skin [22] through under-
standing of the mechanisms of diffusion and the kinetics 
of skin penetration or direct observation of the induced 
cellular lesions.

Presented here are data on the histological lesions 
induced in human skin ex vivo explants exposed to 70% 
HF. This high concentration was chosen because it is 
frequently found in laboratories and is widely used in 
industry. HF is widely used in metallurgy, chemistry, in 
the paper industry, for engraving (etching) crystal in the 
glassmaking industry, in analytical chemistry, and as a 
semiconductor etchant. It is representative of the most 
dangerous accidental occurrences in cases of splashes 
due to the severity of burns and potential systemic effects. 
Histological observations of the stratum corneum, gran-
ulosum, and spinosum, the basal and suprabasal layers 
of the epidermis, and the papillary and reticular dermis 
were done to demonstrate the severity of the progres-
siveness and deterioration evoked by HF burns from the 
epidermis down to the depth of the dermis.

This study demonstrated the irreversibility of the tis-
sue injury process that became cumulative. This model 
may contribute to the understanding of the mechanism 
of HF burns or of those due to other corrosive chemical 
agents and to the evaluation of decontamination proto-
cols for accidental skin chemical exposures.

Methods

The tested chemical substance was 70% HF (FLUKA Ref. 
47601, Lot 7125 A, titrated to an exact concentration 
of 73.0%). Twenty-one human skin explants obtained 
from an abdominoplasty from a 35-year-old woman 
(Reference P556) were used. Oral informed consent 
was obtained to use the excised tissue for research 
purposes. This patient was undergoing an elective cos-
metic surgery procedure. The skin tissue excised during 
this procedure is considered as “medical waste” and 
may either be disposed of, most often by incineration, 
or may with the verbal consent of the patient and the 
operating surgeon, be donated for research purposes. 

Such tissue is not excised for research purposes. While 
there is no requirement that the operating surgeon ask 
the patient, in the interest of Informed Consent, the 
operating surgeon verbally asked the patient which was 
her preference. If the patient verbally agreed to the use 
of the excised tissue, as the tissue would otherwise be 
destroyed as medical waste, it could without compen-
sation be donated for medical research. In addition, 
BIO-EC Laboratories had declared these procedures, 
prior to this study and other studies conducted in a 
similar manner, to the overall Ethical Committee for 
the appropriate French geographic sector, Hôpital du 
Kremelin-Bicêtre, 94270 Le Kremelin Bicêtre, France 
through the Web site of the French Ministry of Health. 
As well, BIO-EC had developed prior relationships with 
clinics and hospitals such that human skin explants, not 
specifically excised for experimentation, could be used 
in accordance with all applicable ethical principles.

The diameter of each explant was ∼10 mm. The 
explants were preserved in BEM medium (BIO-EC’s 
Explant Medium batch 060208) at 37°C in a moist atmo-
sphere containing 5% CO

2
 for 12–15 h before the study 

began. The HF acid solution was applied topically on 
each explant (in triplicate to ensure internal test con-
sistency rather than for any statistical purposes) with a 
filter paper disk (Medias Filtrans Durieux S.A. reference 
No. 268, 9 mm diameter) saturated with 30 µL of 70% HF 
solution. Disks were removed after 20 sec and the reac-
tion was scored histologically at 20 sec, and then at 1, 2, 3, 
4, and 5 min after HF-saturated disk removal.

Sampling for explant histology was immediate, just 
after the end of the exposure.

After 48 h of fixation in Bouin’s solution, composed of 
distilled water (balance), 30% formaldehyde, 5% acetic 
acid, <4% methyl alcohol, and 1% picric acid (supplied 
by BIO-EC, batch No. 280299 BHI), the samples were 
treated by a dehydration and impregnation process 
performed with a Leica 1020 automatic dehydrator. 
During this process, water was progressively removed 
and replaced by ethanol using 70% ethanol, and then 
a 95% ethanol solution. Ethanol was then replaced by 
butanol, and the explants finally immersed in a bath 
containing paraffin at 56°C. This 3-day process included, 
successively, three baths of 70% ethanol, three baths 
of 95% ethanol, five baths of butanol, and two baths 
of paraffin. After preparation, explants were placed 
in blocks with a Leica EG 1160 coating station; 5-µm 
slices were made with a Minot-type microtome (Leica 
2125) and pressed onto superfrosted silanized glass 
histology slides. Microscopic observations were per-
formed by optical microscopy with a Leica type DLMB 
microscope with a 40× objective. Photomicrographs 
were performed with a CCD Sony DXC 390P camera 
and stored with Leica IM1000 data archiving software. 
The observations of general morphology were carried 
out on paraffin slices dyed with Masson’s trichrome, 
Goldner variant. Cellular structural alterations were 
searched for in the four main skin layers (i.e. superficial 

HF H+ + F−

Ca2+ +  2F− Ca F2

MgF2Mg2+ +  2F−

Figure 1. Chemical reactions between fluoride ions and calcium/
magnesium. (See colour version of this figure online at www.
informahealthcare.com/cot)
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and basal epidermis, papillary and reticular dermis). 
Because this study resulted in only observational and 
descriptive data, no statistical analysis was appropriate 
or could be done.

Results

All samples of the unexposed control group showed 
normal morphology. Skin layer thickness of the utilized 
explants is listed in Table 1. Histological aspects of sam-
ples showed that the stratum corneum is more or less 
thick, moderately laminated, slightly keratinized at the 
surface and more at its base. The epidermis showed four 
to five cellular layers.

The demarcation of the dermal–epidermal junction 
was moderate. In the papillary dermis, collagen showed 
average thickness fibers forming a low-density network. 
The cellular structures had a normal morphology. In the 
lower reticular dermis, the cellular structures had normal 
morphology (Figure 2).

It was observed that after 20 sec of 70% HF exposure, 
no deterioration of the epidermal or dermal structures 
had occurred (Figure 3).

At 1 min after a 20-sec exposure (Figure 4), the epi-
dermis showed four to five cellular layers with a slightly 
modified morphology. The cells showed gray cytoplasm 
in the upper layer and the nuclei became pyknotic. The 
cellular structures of the basal epidermis and throughout 
the dermis showed normal morphologies.

At 2 min after a 20-sec exposure, the skin showed four 
to five cellular layers with definitely abnormal morphol-
ogy: cells with nuclei becoming pyknotic, especially in 
the higher epidermal layers, and the cytoplasm becoming 
acidophilic as reflected by orange keratinocyte pigmen-
tation (Figure 5). The cellular structures in the dermis 
showed normal morphology.

At 3 min after a 20-sec exposure, lesions of four to five 
epidermis cellular layers were characterized by numer-
ous cells with moderately pyknotic nuclei and edema 
surrounding the nuclei. At the base of the stratum cor-
neum and in the basal epidermis layer, cells showed 
characteristic cytoplasmic alterations. In the papillary 
dermis, the cellular structures were slightly pyknotic. The 
reticular dermis remained normal (Figure 6).

Table 1. Mean thickness of the human skin explants layers.
Thickness (µm)

Total skin 3972
Epidermis 72 Stratum corneum + granulosum + 

spinosum
57

Basal layer 15
Dermis 3900 Papillary dermis 248

Reticular dermis 3652
Note: Standard deviations (SDs) or standard errors of the mean 
(SEMs) were not calculated.

Epidermis

Suprabasal layer

Dermo–epidermal junction

100 µm

Basal layer

DMLB Objectif 40

Dermis

Papillary dermis

Reticular dermis

Stratum corneum

Figure 2. Normal aspect of skin optical microscopy with 40× 
objective. (See colour version of this figure online at www.
informahealthcare.com/cot)

100 µmDMLB Objectif 40

Figure 3. Skin histological aspect after a 20-sec exposure to 30 µL 
of 70% hydrofluoric acid (HF). No deterioration of the epidermal 
or dermal structures. (See colour version of this figure online at 
www.informahealthcare.com/cot)

100 µmDMLB Objectif 40

Figure 4. Skin histological aspect at 1 min after a 20-sec exposure 
to 30 µL of 70% hydrofluoric acid (HF). The epidermis showed 
four to five cellular layers with a slightly modified morphology. 
The cells showed gray cytoplasm in the upper layer and the nuclei 
became pyknotic. The cellular structures of the basal epidermis 
and throughout the dermis showed normal morphologies. (See 
colour version of this figure online at www.informahealthcare.
com/cot)
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At 4 min after a 20-sec exposure, the same  
deteriorations in the epidermis were observed compared 
with those described at 3 min. In the papillary dermis, 
cells more clearly showed pyknotic nuclei, but the reticu-
lar dermis remained normal (Figure 7).

Finally, at 5 min after a 20-sec exposure, the same 
lesions as those detected after 4 min were observed in 
the epidermis and papillary dermis. However, as the 
HF had penetrated into the reticular dermis, slightly 
pyknotic nuclei were observed in cells in this deepest 
layer (Figure 8).

Discussion

Skin thickness varies considerably between races and 
age groups, between men and women, and according 
to different body regions [23–30]. For the epidermis, the 
chief difference is in the horny layer. The basal cell layer 
remains constant in nearly all cases [25–27].

The dermis comprises most of the skin thickness and 
varies more from one skin region to another. Relatively 
thin in youth, the dermis reaches its maximum thickness 
between 40 and 50 years of age. Then it decreases until the 
thickness in old age resembles that in childhood [28].

Table 2 shows the differential published values 
between maximum and minimum thickness of the skin. 
In addition, the last line shows the comparative data of 

100 µmDMLB Objectif 40

Figure 5. Skin histological aspect at 2 min after a 20-sec exposure 
to 30 µL of 70% hydrofluoric acid (HF). The skin showed four to 
five cellular layers with definitely abnormal morphology: cells 
with nuclei becoming pyknotic, especially in the higher epidermal 
layers, and the cytoplasm becoming acidophilic as reflected by 
orange keratinocyte pigmentation. The cellular structures in the 
dermis showed normal morphology. (See colour version of this 
figure online at www.informahealthcare.com/cot)

100 µmDMLB Objectif 40

Figure 6. Skin histological aspect at 3 min after a 20-sec exposure 
to 30 µL of 70% hydrofluoric acid (HF). Lesions of four to five 
epidermis cellular layers were characterized by numerous cells with 
moderately pyknotic nuclei and edema surrounding the nuclei. 
At the base of the stratum corneum and in the basal epidermis 
layer, cells showed characteristic cytoplasmic alterations. In the 
papillary dermis, the cellular structures were slightly pyknotic. 
The reticular dermis remained normal. (See colour version of this 
figure online at www.informahealthcare.com/cot)

100 µmDMLB Objectif 40

Figure 7. Skin histological aspect at 4 min after a 20-sec exposure 
to 30 µL of 70% hydrofluoric acid (HF). The same deteriorations in 
the epidermis were observed compared with those described at 
3 min. In the papillary dermis, cells more clearly showed pyknotic 
nuclei, but the reticular dermis remained normal. (See colour 
version of this figure online at www.informahealthcare.com/cot)

100 µmDMLB Objectif 40

Figure 8. Skin histological aspect at 5 min after a 20-sec exposure 
to 30 µL of 70% hydrofluoric acid (HF). The same lesions as those 
detected after 4 min were observed in the epidermis and papillary 
dermis. However, as the HF had penetrated into the reticular 
dermis, slightly pyknotic nuclei were observed in cells in this 
deepest layer. (See colour version of this figure online at www.
informahealthcare.com/cot)
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the ex vivo explants used in the current study. Table 3 
shows the differences between Asian and European 
skin layer thickness. The epidermis thickness also partly 
depends on the techniques of measurement and/or tis-
sue fixation.

The kinetics of HF skin penetration is clinically known 
through observed signs and symptoms during accidental 
exposures. Based on the analysis of accidents in work-
ers, high concentration HF burns are generally thought 
to completely develop in the following few minutes after 
exposure [31]. To improve and further specify immediate 
first-aid care, it is useful to have a more precise under-
standing of the development of the initial lesions follow-
ing HF contact.

The key factors in the development and severity of HF 
cutaneous burns are concentration, contact time, total 
body percentage surface area (TBSA) exposed, and skin 
penetration. However, there is a lack of knowledge on tis-
sue damage regarding the time needed for full-thickness 
skin penetration of concentrated HF.

The established ex vivo human skin explant model 
utilized in this study allowed real-time histological 
observation of the diffusion of 70% HF through the 
skin as manifested by the evolution of cellular and 

tissue injury. The histological observations offered the  
possibility of closely following the reaction of the tissue, 
layer by layer, in the epidermis and dermis after contact 
with concentrated HF. Human skin explants from all 
the control samples maintained alive during the experi-
ments (performed in triplicate to ensure internal test 
consistency) showed normal cellular morphology. For 
the HF-exposed explants, the lesions were identical on 
the three series treated in parallel at each stage. Thus, 
the human skin explant model exposed to 70% HF is 
reproducible, demonstrating the irreversibility, severity, 
and rapidity of penetration of 70% HF, and its capacity to 
cause dermal burns.

In these experimental conditions, 70% HF did not 
cause immediate massive injury. The cellular alterations 
first appeared between 20 sec and 1 min after a 20-sec 
exposure. HF penetration through all layers of the human 
skin explants was observed at 5 min after a 20-sec contact. 
The onset of epidermal lesions after 1 min of exposure is 
in accordance with both previously reported experimen-
tal data [31] and previously reported accidental exposures 
[32]. The slight cellular deteriorations that appeared in 
the superficial epidermal layer progress, at 3 min after a 
20-sec exposure, to emerging cellular edema in the epi-
dermis and slightly pyknotic cells in the papillary dermis. 
At 5 min after a 20-sec HF contact, the lesions are clearly 
obvious in the epidermis and papillary dermis. Lower 
reticular dermis alterations were still minimal. Tables 4 
and 5 summarize these observations.

From the study presented here, it was possible to 
estimate the rapidity of emergence of cellular lesions 
(Figure 9) into each skin layer, as all skin layer thick-
nesses were measured histologically.

Penetration rates were approximated by histological 
observations of evolving cellular and tissue damage. The 
observed penetration rate through the stratum corneum, 
granulosum, and spinosum layers was ∼57 µm/min. 
These data are interesting because the rate-limiting bar-
rier to the absorption of most chemicals is the stratum 
corneum [33]. Then, the penetration rate slowed to 15 
µm/min, and it took about one more minute to cross into 
the lower basal layer. This decrease in penetration rate 

Table 2. Comparison between known values of skin thickness.

Authors
Epidermis  

(µm)
Dermis  

(µm)
Total thickness 

(µm)
Cowdry [26] 20–100   
Maximow and 
Bloom [27]

70–140 1000–3000 Calculated*: 
1070–3140

Southwood [28] 20–140 400–2500 Calculated*: 
420–3900

Artz et al. [30] 39–64 956–1911 Calculated*: 
995–1975

Lee and Hwang 
[29]

31–637 469–1942 Measured*: 
521–1277

Our explants 72 3900 Measured*: 
3972

*Measured histologically. There are differences between the 
calculated values (sum of the minimal and the maximal data) 
and the measured one because the thinnest epidermis was not 
necessarily associated with the thinnest dermis and vice versa. 
Values given are means. Neither SDs nor SEMs were calculated. 
There data are only intended to show the relative similarity of the 
human skin explants utilized in this study to published values for 
normal skin thickness.

Table 3. Comparison of thickness of abdomen skin between 
races.
Abdomen 
thickness (µm)* Epidermis Dermis % E (E+D)
European 41–40 1640–1492 2.4–2.6
Asian 69 1248 6.0
Our experiment 72 3900 (papillary d 

ermis: 248, reticular  
dermis: 3652)

1.8

*European values taken from Southwood [28] and Artz et al. 
[30] versus Asian from Lee and Hwang [29]. Last line: our 
experimental data.

Table 4. Dynamics of appearance of lesions after skin exposure 
to 70% hydrofluoric acid (HF).
Duration of exposure Microscopic morphology
1 min Beginning of the attack in the higher 

part of the epidermis
2 min Attack of the basal layer of the 

epidermis
3 min Epidermis completely damagedFirst 

lesions of the papillary dermis 
(superficial part of the dermis)

4 min Epidermis completely damagedClear 
attack of the papillary dermis

5 min Epidermis completely 
damagedBeginning of attack of the 
reticular dermis (deeper layer of the 
dermis)
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may be due to the specific structure of the acellular dense 
connective tissue of the basement membrane separating 
the epidermis from the upper dermis. Afterward, the 
penetration rate accelerated up to 248 µm/min through 
the papillary dermis. At the end of the experiment, HF 
injury was as deep as 1600 µm from the skin surface. In 
the reticular dermis, the penetration rate reached 1280 
µm/min, probably due to the specific composition and 
density of this layer. Although the cellular alterations 
were evident (Table 5), tissue structures maintained a 
coherent appearance, even at 5 min after a 20-sec expo-
sure to 70% HF.

The epidermis remained visible by microscopic 
observation in a human case report with a lethal 60% 
HF burn, as described by Ohtani et al. [34]. Also, we did 
not observe massive necrosis (denaturation of the cells 

and disintegration of the structures) in this human skin  
ex vivo study, as has been frequently described in the clin-
ical setting following accidental cutaneous acid chemical 
burns in humans [35]. This might be a unique pathologi-
cal feature of the skin lesions in HF burns. These findings 
could be due to a specific effect of HF as opposed to other 
inorganic acids. Compared with a strong acid, such as 
hydrochloric acid (HCl), HF is 1000 times less dissoci-
ated. This is derived from the following formula [36]:

For an acid such as HF:

pH p log ([(base]/[acid)])a= +K
 
 At pH = 0, for HF, the relationship is

0 3.2 log ([F ]/[HF])= = −

 
 and thus is 10−3.2 or ∼10−3 = [F−]/[HF]

Whereas a strong acid such as HCl is completely dis-
sociated at pH = 0, and therefore:

[HCl] [H ] [Cl ]= ++ −

 
 Thus, there is a factor of ∼1000 between the concentra-
tion of F− and the concentration of nondissociated HF.

The observed cellular alterations are correlated with 
the chemical and physical properties of HF, a particularly 
dangerous acid, corrosive, and protoplasmic poison, 
since it is a small molecule (MW = 20) and a partially dis-
sociated acid (pK

a
 = 3.2) at the skin surface.

Although HF is partially dissociated at the skin surface, 
another portion is nondissociated and can penetrate, and 
then be dissociated more deeply in the tissue. Previous 
studies [37,38] suggest that HF is nondissociated at the 
surface of the skin and can easily penetrate through 
the epidermis and would easily cross lipid membranes. 
Matsuno [39] also suggests that nondissociated HF rapidly 
penetrates the skin. Gutknecht and Walter [40] studied 
HF transport through lipid bilayer membranes, hypoth-
esizing that F− transport through biological membranes 
occurs mainly by nonionic diffusion of HF. Membrane 
permeability of HF ranges from 10−4 to 10−3 cm/sec, five to 
seven orders of magnitude higher than the permeability 
of F− and H+.

Table 5. Details of histological cell alterations during a 5-min 
skin exposure to 70% hydrofluoric acid (HF).
20 sec Epidermis GM* 

(Good morphology)Papillary dermis
Reticular dermis

1 min Epidermis Slightly 
PN + AC  
(Pyknotic nucleus and 
acidophilic cytoplasm)

Papillary dermis GM
Reticular dermis

2 min Epidermis PN + AC
Papillary dermis GM
Reticular dermis

3 min Epidermis PN + AC
Papillary dermis Slightly PN + AC
Reticular dermis GM

4 min Epidermis PN + AC
Papillary dermis
Reticular dermis GM

5 min Epidermis PN + AC
Papillary dermis
Reticular dermis Slightly PN + AC

*Cell alterations: good morphology (GM), pyknotic nucleus (PN), 
and acidophilic cytoplasm (AC).

1 min (superficial part
of the epidermis)

57

1400

1200

1000

800

600

400

200

0 15

248

1280

2 min (basal
epidermis layer)

70% HF exposure: speed of arising
damage in human skin explants (µm/min)

3 min (papillary
dermis)

5 min (medium part
of reticular dermis)

Figure 9. Kinetics of 70% hydrofluoric acid (HF) through human ex vivo skin explants. (See 
colour version of this figure online at www.informahealthcare.com/cot)
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Dissociation with liberation of F− ions would occur 
secondarily in deeper tissues. The liberated fluoride ion 
attacks enzymes and cell membranes [39]. The formation 
of salts with tissue cations such as calcium and magne-
sium drives progressive dissociation of HF molecules. 
The residues are relatively insoluble and stable (pKs 
CaF

2
 = 10.5 and pKs MgF

2
 = 8.2), precipitating within the 

tissues [41]. Other fluoride salts are much more soluble 
and dissociable [41], liberating fluoride ion that remains 
available to react chemically with tissues [42].

In these experimental conditions, HF corrosiveness 
generates a caustic burn at the epidermal surface, fol-
lowed by a completely disrupted physiological equi-
librium. The observed kinetics of cellular skin damage 
due to 70% HF demonstrated that initial decontamina-
tion is a question of about 1 min to prevent or minimize 
the severity of HF burns. This experimental model 
seems to be a useful instrument for further experi-
ments to more completely understand the kinetics 
and mechanism of cutaneous damage due to chemical 
agents and for comparing the efficacy of decontamina-
tion solutions [43].
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